Pointwise multipliers for reverse Holder spaces
نویسندگان
چکیده
منابع مشابه
POINTWISE MULTIPLIERS FOR REVERSE HÖLDER SPACES II By
We classify weights which map strong reverse Hölder weight classes to weak reverse Hölder weight spaces under pointwise multiplication.
متن کاملSmooth pointwise multipliers of modulation spaces
Let 1 < p, q < ∞ and s, r ∈ R. It is proved that any function in the amalgam space W (H p′(R ), l∞), where p ′ is the conjugate exponent to p and H p′(R ) is the Bessel potential space, defines a bounded pointwise multiplication operator in the modulation space M p,q(R ), whenever r > |s|+ d.
متن کاملPointwise Multipliers of Besov Spaces of Smoothness Zero and Spaces of Continuous Functions
متن کامل
Non-smooth atomic decompositions, traces on Lipschitz domains, and pointwise multipliers in function spaces
We provide non-smooth atomic decompositions for Besov spaces Bsp,q(R n), s > 0, 0 < p, q ≤ ∞, defined via differences. The results are used to compute the trace of Besov spaces on the boundary Γ of bounded Lipschitz domains Ω with smoothness s restricted to 0 < s < 1 and no further restrictions on the parameters p, q. We conclude with some more applications in terms of pointwise multipliers. Ma...
متن کاملAtomic representations in function spaces and applications to pointwise multipliers and diffeomorphisms, a new approach
In Chapter 4 of [28] Triebel proved two theorems concerning pointwise multipliers and diffeomorphisms in function spaces Bp,q(R n) and Fs p,q(R n). In each case he presented two approaches, one via atoms and one via local means. While the approach via atoms was very satisfactory concerning the length and simplicity, only the rather technical approach via local means proved the theorems in full ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 1994
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm-109-1-23-39